An O(n log 2n) Algorithm for the Optimal Sink Location Problem in Dynamic Tree Networks
نویسندگان
چکیده
In this paper, we consider a sink location in a dynamic network which consists of a graph with capacities and transit times on its arcs. Given a dynamic network with initial supplies at vertices, the problem is to find a vertex v as a sink in the network such that we can send all the initial supplies to v as quickly as possible. We present an O(n log n) time algorithm for the sink location problem, in a dynamic network of tree structure where n is the number of vertices in the network. This improves upon the existing O(n2)-time bound. As a corollary, we also show that the quickest transshipment problem can be solved in O(n log n) time if a given network is a tree and has a single sink. Our results are based on data structures for representing tables (i.e., sets of intervals with their height), which may be of independent interest.
منابع مشابه
Minimax Regret Sink Location Problem in Dynamic Tree Networks with Uniform Capacity
This paper addresses the minimax regret sink location problem in dynamic tree networks. In our model, a dynamic tree network consists of an undirected tree with positive edge lengths and uniform edge capacity, and the vertex supply which is a positive value is unknown but only the interval of supply is known. A particular realization of supply to each vertex is called a scenario. Under any scen...
متن کاملAN O(n log n) ALGORITHM FOR A SINK LOCA- TION PROBLEM IN DYNAMIC TREE NETWORKS
In this paper, we consider a sink location in a dynamic network which consists of a graph with capacities and transit times on its arcs. Given a dynamic network with initial supplies at vertices, the problem is to find a vertex v as a sink in the network such that we can send all the initial supplies to v as quickly as possible. We present an O(n log n) time algorithm for the sink location prob...
متن کاملAn efficient algorithm for finding the semi-obnoxious $(k,l)$-core of a tree
In this paper we study finding the $(k,l)$-core problem on a tree which the vertices have positive or negative weights. Let $T=(V,E)$ be a tree. The $(k,l)$-core of $T$ is a subtree with at most $k$ leaves and with a diameter of at most $l$ which the sum of the weighted distances from all vertices to this subtree is minimized. We show that, when the sum of the weights of vertices is negative, t...
متن کاملMinimax Regret k-sink Location Problem in Dynamic Path Networks
This paper considers minimax regret 1-sink location problems in dynamic path networks. A dynamic path network consists of an undirected path with positive edge lengths and constant edge capacity and the vertex supply which is nonnegative value, called weight, is unknown but only the interval of weight is known. A particular assignment of weight to each vertex is called a scenario. Under any sce...
متن کاملMultiple Sink Location Problems in Dynamic Path Networks
This paper considers the k-sink location problem in dynamic path networks. In our model, a dynamic path network consists of an undirected path with positive edge lengths, uniform edge capacity, and positive vertex supplies. Here, each vertex supply corresponds to a set of evacuees. Then, the problem requires to find the optimal location of k sinks in a given path so that each evacuee is sent to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004